A CRASH COURSE IN GENERAL RELATIVITY AND BLACK
HOLES

OLUMAKINDE OGUNNAIKE

1. SPECIAL RELATIVITY AND 4-VECTORS

In this section, we’ll blitz through an introduction to special relativity. We’ll focus on
the odd properties and geometric relations of the relativistic spacetime that replaces old
notions of distinct space and time. Along the way, it will be useful to introduce some new
notation that will become indispensable in later sections.

1.1. Relativity and Reference Frames. Much of physics is about finding constants.
The world is a complicated place, so, to make modeling it easier, we look for things that
are less complicated. Things that are symmetric under rotations or constant over time
are some of the best examples of this. In these cases, it shouldn’t matter if we look at
our system at an angle or after an hour, respectively. We might still describe events with
angles and times, but that’s more a matter of convention than necessity. But, for better
or worse, we perceive the world in a conventional way (we see distances from ourselves,
and imagine times measured from the present). We just hope that some aspects of how we
perceive the world (like the fundamental physical laws that determine physics) aren’t too
dependent on the person describing them. The laws of physics should be objective things.

To make this all a bit more concrete, we’ll introduce the concept of reference frames.
Roughly speaking these are the descriptions of the world from the perspective of a person
(aka an observer), who considers themself to be at rest. So if I am in a boat traveling
towards my friend on the shore, in my reference frame, he and the shore are both actually
moving towards me! Essentially, to translate between two observers reference frames is
simply to translate between different conventions of perceiving or describing the world. A
natural question you might ask is this: when is one convention better than another? After
all, if I see both my friend and the shoreline coming closer to me, I should reasonably
deduce that I am actually the one moving. This might seem reasonable due to experience,
but according to physics, there’s nothing to say the whole shoreline wouldn’t be moving.
The real reason you could likely tell you were moving would be the ripples in the water
behind you or the rocking of the boat. If these were not there, you would hope that the
laws of physics would not care if you were moving or still.

The above idea is called the principle of relativity. It says that there is no ” preferred”
inertial (non-accelerating) reference frame. So as long as I move at a constant velocity, the
1



2 OLUMAKINDE OGUNNAIKE

physics I see should be the same physics you see.! But that doesn’t change the fact that the
distances and times in one reference frame will be different from those in another. We need a
way to consistently translate between them. The most familiar and intuitive transformation
between reference frame is that of Galilean Transformations. The reference frame of
someone moving forward at speed v in the x-direction is simply

=z —ut
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(1.1.1) ;o

Z =z

=t

These are really easy to understand. Essentially, they just say that if I want to describe
things in the reference frame of someone moving at a velocity, v, in front of me, I can
just use my own description and subtract off the rate at which this reference frame is
moving forward, vt, from any positions I measure. What’s important to notice in this
transformation is that we held time constant between reference frames. This is a great
approximation of our daily experience, but in reality, isn’t quite right....

1.2. Lorentz Transformation. Back in the 1800’s and around the turn of the century,
physicists like Maxwell and Einstein figured out that the equations governing Electromag-
netism told a funny story. They said that the speed at which light travels was constant,
regardless of reference frame. That speed, though, is so fast, it’s not surprising we missed
it for so long:

(1.2.1) ¢ = 299,792, 458m,/ s

It doesn’t take much work to see how this messes up the Galilean transformations above.
But it will take a little work to show how we can construct transformations that respect a
constant speed of light instead of a constant rate of the passage of time.

To get a feel for this, we can look at what happens to time in reference frames moving
with respect to each other. If we consider a ”light clock,” where light is bouncing between
two mirrors, we notice that it will look very different if we are moving with respect to the
mirrors. In frame (a), it travels up an down a distance, h, while in frame (b) it also travels
across a distance vt.2

In frame (a), the light returns to its original position after a time At = % But in frame
(b), this time is a little more complicated:

For an example of a non-inertial reference frame, think of spinning around on a merry-go-round. As
long as you stay at a fixed radius, you'll feel a centrifugal force pushing outwards, like an extra gravitational
force. But someone outside the merry-go-round, this extra, ever-present force isn’t present, so according to
special relativity, you experience different physics.

2t is important that the time ”t” is measured in the moving frame where the mirrors are stationary.
Can you see why?
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F1cUure 1.1. A light clock in a relatively stationary reference frame, and
one moving ar a relative velocity ”v”

2 2h
(1.2.2) At = =\/h?2+ (vAY)?, = At = 7/02
C Vi-5
But if you remember what the time for this period was in the original frame (At = <%),
this can be re-written to give us the famous time-dilation formula:

At

’U2
V2
1
it gets its own symbol. Notice that 4 > 1, so that time intervals in a moving frame are
always bigger than they are in a stationary one. From this, it is easy to figure out how
space acts. If we look at a point at a distance Ax away from us in a stationary frame, then
in a frame moving at velocity v towards the point (so that it reaches us in time At), it will
actually be at a distance:

/ 2 A
(1.2.4) Azr = vAt = vA4 /1 — v_2%
& v

And we have the famous length contraction formula. It turns out these can be made
more general by introducing Lorentz Transformations. These take a bit more time to

(1.2.3) At = yAt =

Here we introduce the lorentz factor: v = . It appears so often in relativity that
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derive properly, but let’s start with the most general type of linear transformation and see
if we can’t figure them out.>:

2 =ax + bt

1.2.5
(1.25) t'=dx+et

We will call the reference frame with unprimed coordinates S, and that with primed
coordinates S’. Now, if the origin in S (x = 0) moves at speed -v in the S’ frame, then the
transformation above tells us two things:

dz’ b
1.2.6 =bt, t'=et — =—-=—v
( ) ’ dt' e
But since v = Cg% = g, we can see that a = e, and b = —auw:

2 = ax — avt

1.2.7
(1.2.7) t' =dz+at

Now, if we require light to move at the same speed in both reference frames, then when
2 =ct', z=ct so

ct' = a(ct) — avt

1.2.8
( ) t' = dect + at

Which allows us to solve for d = —3”. One last thing is needed to give us our lorentz
transformations. To solve for a, we can check that the transformation works in reverse,
solving for x and t in terms of x’ and t’, or simply guess the right answer from the con-
traction formulas found above:

(1.2.9)

Framed in terms of matricies, this becomes:

(1.2.10) (ffl> =7 <_12 _1U> (f)

3Why is it essential that the transformation is linear? It has to do with inertial reference frames moving
at constant speeds....
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1.3. The spacetime interval. Now that we’ve gone over transformations, we can begin
to talk about spacetime geometry. Geometry doesn’t care about coordinates, only lengths
and angles. A square rotated 45° to look like a diamond still has the same geometry, even
if we change perspective. This means that if we rotate a coordinate system (x,y) by some
angle 0, it shouldn’t change the lengths or angles in the square. We can write a rotation
of coordinates as

z cos —sinb\ [z
(1.3.1) <y’> a (sin@ cos 6 > <y)

Notice that this is very similar to the Lorentz transformation defined above. But in our
2D planar geometry, as we said, there was something that didn’t depend on the rotations
above: length. And if we recall the (square of the) length in 2D can be defined as:

(1.3.2) (Ar)? = (Az)? + (Ay)?

As an excercise, we put in rotated coordinates to check that the length really doesn’t
change®:

(1.3.3)
(Ar)? = (A2')? + (Ay)?

= (Azcosf — Aysin6)? + (Ay' cosf + Az sin f)?

= (Ax)?(cos? 0 + sin? 0) + (Ay)?(cos? O + sin? 0) + (Ax)(Ay)(— cos O sind + cos §sin 0)

= (Az)? + (Ay)? = (Ar)?

Now, we want to find something similar for the two spacetime variables x and t, but
there’s something a bit funny. The lorentz transformation gets even more odd, if we go

through a little algebra, we can rewrite the lorentz transformation into something even
more similar to the rotations above:

2"\ [ coshn —sinhn) [z
(1.3.4) (y) - <— sinhn  coshn > (t)

Where v = coshn and yv = sinh . Now this looks like a rotation, but in hyperbolic co-
ordinates. For these to work, we need a new definition of length. We define the spacetime
interval as:

(1.3.5) (As)? = (Az)? — (cAt)?

4This, and the invariance in the next section have one more requirement involving something called a
determinant. To get a sense of how it works, try multiplying each matrix entry by a different variable, and
check how they need to be related to give the original result.
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Why the negative sign? Well it has something to do with what we define this to be a
distance from. Before getting into that, though, lets check it is, indeed invariant under the
lorentz transformations:

(As')? = (Az')? — (cAt')?
Azv

= 2(Az — vAl)? — (AL — 2 )2
v? v?
(1.3.6) =2 <(Ax)2(1 - 62) — (eAt)?(1 - c2)>

1)2

=21 %)(A0)? — (eAt)?
= (Aav)2 — (cAt)? = (As)2

Well this is certainly invariant, but it has the odd property that any point that satisfies
x = ct has a spacetime interval of As = 0. What this means is that the spacetime interval
does not define a length in the normal sense, but in the same way that the length of a
straight line measures the shortest possible distance between two points (say, the origin
and another point (x,y)), the spacetime interval measures the shortest possible distance
between two points (essentially by going to the frame where the two events happen at the
same time). This takes some getting used to. A good way to try to do so is to think
about the different ways coordinate systems change when they are rotated vs when they
are boosted (giving a lorentz transform)

FIGURE 1.2. A minkowski Diagram for three different coordinate systems
under boosts, and one for a rotated coordinate system

1.4. 4-vectors, metrics, and notation. This can be written in a slightly more compact
way. We can re-write these two lengths by using a matrix to define an inner product:
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(Ar)? = (Az  Ay) <(1) (1)> (g) = Z&ijAriAN = (A7) + (Ay)?
(L4.1) —1 0\ [cAt ’
(As)? = (cAt Aa;) < 0 1> (A:r) = ;nijﬂj“AQjV = —2(At)? + (Ax)?

Where we defined r* such that (r!,7?) = (z,y), and x# such that (z°,2!) = (ct,x). Now
we can define inner products for our two different geometries with d;; and 7,,,. These are the
metric tensors for the different geometries®. These define notions of distance in different
spaces. Another familiar example might be the metric for R? in spherical coordinates and
that of the surface of a sphere S2:

1 0 0 1 0
(1.4.2) (Sij = 0 T2 0 y hij = (0 Sin2 0)
0 0 7r2%sin?6

At this point, some comments on notation and conventions.

(1) At this point, since space and time are twisting together, it helps to define points
by lumping together their 3 position coordinates and 1 time component. This way,
an "event” in spacetime can be given a 4-vector z* = (ct, z,y, 2)".

(2) since space and time are now on nearly the same footing, we notice that the speed
of light is essentially just a unit conversion factor (like 2.54 in/cm). So from now
on, we will just assume we are measuring everything in the appropriate units (you
can think of this like measuring time in ”light seconds”), or to put it another way,
we will be setting ¢ = 1 from now on.

(3) Finally, we will be doing lots of sums in future, especially with different metrics.
Now that we have four components to keep track of, lots of things will be loaded into
explicit sums. But this will still look messy. To avoid cluttering calculations with
summation symbols, we will sum over any repeated indicies. This means that the
length formula above can be written® (A7)2 = §;; AriAri = (Az)? + (Ay)? + (Az)?

Now metrics are extremely important to general relativity, so we might as well take
some time to get comfortable with them. As the name implies, metrics are integrally
linked to notions of measuring distance. But, as we’ve discussed before, distance doesn’t
depend on the coordinates we use. So although we’ve written out multiple examples of

metrics in particular coordinates, These coordinates are just an arbitrary choice. To get a

Sa tensor is simply something with a number of indicies that transforms linearly. Familiar examples of
these are the 1-tensors known as vectors, and 2-tensors, known as matricies, like those we used to define
metrics above.

6The convention is that a lower index counts the elements along a row, while an upper index counts the
elements down a column. So a vector 7 is a column vector, a vector r; is a row vector, and matricies should
really be written as Mlj . To raise or lower a matrix, you simply multiply by the corresponding metric. So
that a row vector can be expressed as a column vector times the metric: r; = 6i]-rj
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better feel for this, lets think of three different ways of parametrizing the plane R?. First,
we’'ll use cartesian coordinates (x,y), then polar coordinates (r,0), and finally, a new set
of coordinates (u,v) such that u = x and v = (x 4 y)/v/2. These last coordinates are just
what would happen if we decided to bend the y-axis outwards at a 45° angle. Well, let’s
get the metric for R? (given by §;;) in these coordinates. For cartesian coordinates, we
need only look at Eq. (1.4.1):

(1.4.3) (dr)? = (dz)? + (dy)? = (dz dy) ((1) (1)> (Z";) ;= 0w, y) = ((1) 2)

To get the metric in other coordinates, we can simply substitute the definitions of x an
y into the cartesian definition of length:

(1.4.4)
(dr)? = (d(rcos0))? + (d(rsin6))? = (dr cos§ — rdf sin §)* + (drsin @ + rdf cos )*

= (cos? 0 + sin? 0)(dr)? + (cos? § + sin? 0)r%(d6)?, = dij(r, 0) = <é 792)

(dr)? = (du)? + (d(V2v — u))? = 2(du)? + 2(dv)? — 2v2dudv, = |d;;(u,v) = (_\/5 5

2 V2

)

These are three different ways of describing the same 2D planar geometry. They all
give the same length formula (this should be clear since we derived them all from the
same length formula), and they also give the same notion of angles. This is clear for polar
and cartesian coordinates, whose basis vectors (x,y,r, and @) are orthogonal to the paired
variable in their coordinate system. However, this is not the case for the (u,v) coordinate
system. « and ¥ are certainly not orthogonal, but we can find the angle between them
using the inner product defined by the metric in their coordinate system:

TRE] 2 —v2\ /0 1
(1.4.5) cosf = @ <(1 0) <_\/§ 5 > <1>) (V2% V?2) = 7

From this, we can infer that the basis vectors are rotated by an angle of 135° with
respect ot one another, just as we said previously from their description. This teaches us
that just because two metrics have different entries (even if one has diagonal entries and
one does not), it does not imply that they describe different notions of lengths and angles
(different geometries). In fact, so long as you can write a well-defined transformation from
one coordinate system to another over the entire surface, as we did here, the descriptions
should be equivalent. However, if there is no nice transformation that makes the metric
look like it does for the cartesian description d;;(x,y) for an entire surface’, this is a sign

TAnother way of saying this would be that when you put a matrix in diagonal form, the entries, called
etgenvalues, shouldn’t depend on any variables if your geometry is flat.
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that the geometry described is something different. An example is the metric for the surface
of a sphere:

1 0
(1.4.6) hij = <0 Sin29>

It only looks like the cartesian metric at the equator (¢ = 7). And this is a sign that
it’s not flat. We’ll see later how we can explicitly quantify aspects of the geometry from
the metric, like curvature. But first, let’s start thinking about what it means to move in a
spacetime whose ”flat” metric has this odd negative entry for time

-1 0 0 O
0O 1 0O
n(taf)#V = 0 01 0
0O 0 0 1

1%

2. DIFFERENTIAL GEOMETRY AND GEODESICS

Now that we have a definition of length using the metric 7, we can start using calculus
to figure out what these geometric entities mean. First, we're going to define rest mass,
m, and proper time, 7. These are just the mass of an object and the time between events
in the object’s reference frame (Az = 0). Proper time can be made more quantitative by
defining d1 = ids so that the relative sign between space and time flip:

dt
(2.0.1) dr = /dt?2 —dr?2 = dt\/1 —v?2 = — < dt
Y

Thus, since it is always less than or equal to any measured interval of time between two
events, we see that the proper time is the minimum time between events.

2.1. 4-velocity. Now, we’ve already seen how time and space aren’t invariant under
lorentz transformations. And it’s easy to check that velocities v = ‘Cllf aren’t either. So now

we want to find a better way of measuring rates of time. Enter 4-velocities:

Cdxtdt dF.,  dt

2.1.1 B (e — 20 D = (1. TP
( ) “ dr (dT’dT) dT( ) =1(1,7)

Notice something funny about the four velocity. Because we defined proper time with
that odd imaginary factor, u?> = Nuwutu’ = —1. This is worth checking for yourself.

Another way of saying this is that®:

(2.1.2) dr? = —nda*du”

8From here on, we will use the ”technically incorrect” notation dr? = (dr)?
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2.2. 4-momentum. An easy extension of this is something called 4-momentum:

(2.2.1) P = mut = y(m, mo)* = (E,p)*

This gives us a relativistic definition of momentum and energy, where the energy comes
from the fact that we have set ¢ = 1, so that at rest, the energy should be E = mc? (Thanks,
Einstein!). But just like time and space, these will be different in moving reference frames
in just the same way time and space will be different in different reference frames. This
also gives us the famous relativistic energy-momentum formula:

(2:2.2) = (O + (P = —E+p? = —m?, E= /@ +m?
With these definitions, it should be relatively clear (pun slightly intended) how to do

obtain relativistic definitions of all of our favorite quantities. Simply define the four vector
and take derivatives with respect to proper time or the four-vector.

2.3. Generalizing coordinates. Up to this point, we have been using "nice” coordinates.
Someone moving along through spacetime will follow a trajectory through spacetime given
by x#(7), where 7 is the proper time along their trajectory (or the time measured in their
reference frame)?, and a 4-velocity (tangent to their worldline) given by u*(7) = %T(T).
But we could just as easily have described the trajectory in different coordinates: y*(7).
But to use special relativity, these cannot be just any new coordinates. Remember that
the framework we developed thusfar only works if we are moving with respect to another

observer at a constant velocity. Framed in the new relativistic language we’ve developed:

dut %
dr  dr?

Let’s think about what this means in terms of coordinate transformations. If we want to
transform from the x to the y coordinates, then, using the chain rule, the 4-velocity should
change from u# = df—: to vH = % = ‘Zx—:?—f = u¥ ggi. If we plug this into the equation
above, we get:

dv*  du” dy* d (dy* d (dy*
2.3.2 0= _ v d _d
(2:32) r  ardr " ar (dw) dr <dx”>

(2.3.1)

This essentially means that the Jacobian (ggﬁf) is constant over the worldline, or, to put

it in more familiar terms, converting between reference frames only comes from constant
shifts in the ratios of the definitions of time and space (i.e. different velocities). This
means all we've done is transform our metric 7, by lorentz transforms (imagine rotating
a metric for cartesian coordinates of R?). Well that’s nice to know, but we want to be able
to describe physics in coordinates where things are doing more interesting things. So in
the spirit of what’s been done, we now allow for more general coordinates. We could, for

9VVhy are these equivalent?



A CRASH COURSE IN GENERAL RELATIVITY AND BLACK HOLES 11

example, write down coordinates that are uniformly accelerating relative to another frame,
or one rotating with respect to it.

The examples above don’t work with special relativity, but it would be a shame to give
up all that we’ve done till now, so we're going to stipulate something: if we look really
closely, and only worry about things locally, we expect things to look like they did in special
relativity. This idea is called the equivalence principle, and it is worth dwelling on for
a bit.

Essentially, the equivalence principle says that whatever coordinates we use, however
funny our perspective might be, if we look close enough, physics should look the same:
spacetime should look "flat” like it would in special relativity. To make this quantitative,
let’s look at the geometry of a sphere:

FIGURE 2.1. Vectors that are orthogonal at the north pole of a sphere can
be parallel if moved on the sphere to the equator.

We can describe the upper hemisphere of a unit sphere by the equation z = /1 — 22 — y2 =
V1 — 172, Then we can look at the tangent vectors of the surface. At the north pole, we
can describe a tangent plane with the vectors & and g, like the ones in the image above.
But if we take these same tangents and move them parallel to the direction they are point-
ing, then bring one over to the other, something strange happens...they are now the same
vector. We aren’t describing a tangent plane, we are only describing one tangent direction.
So while the nice, orthogonal (x,y) coordinate system works on one point of a sphere, that
coordinate system stops working correctly if you move too far away. One way to see this
is to write down the metric for the upper hemisphere in cartesian coordinates'®:

1—y2 Ty
— 2212 — 2 .2
(2.3.3) hij(z,y) = (1 T Ty )

1—22—y?  1—z2—y?

v

10Can you see how to get this metric representation?
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When we look at the North pole (x,y) = (0,0), then this metric is just ((1] (1)>, and it

looks like our nice cartesian description of the plane R2. This means that locally, it is "flat.”
But as soon as we move away from this point, we get a bunch of off diagonal terms, and the
diagonal ones aren’t normalized properly. To put this in the language of general relativity,
for small distances and times (looking locally), spacetime should be ”flat,” and look like
special relativity, but if we wait too long, or look over too large distances, we’ll see some
sort of acceleration, no matter what coordinates we use. It’s this ”apparent acceleration”
that we call gravity. In reality, it’s just the fact that spacetime is curved, so we can’t write
"straight” trajectories in any coordinate system (without adding non-gravitational forces).
But looking at the sphere, it looks like we might have to be careful about following straight
lines or tangent vectors, since two vectors that start out orthogonal seem to become parallel
after moving them around the sphere. If we are going to describe motion through curved
geometries, we’ll clearly have to be more careful.

2.4. Moving on curved surfaces. Warning: The next two sections will have bits with
a lot of math that won’t make intuitive sense until near the end. If you’re confused, just
keep reading until the end of both sections, and see if things clear up a bit.

The example of motion along the surface of a sphere shows that when we talk about
moving on a curved surface, we have to be very careful of the coordinates we are using to
describe the motion. If we aren’t, the coordinates we are using can stop being orthogonal,
and even turn enough to point in the same direction! The solution to all of this? Use
multiple different coordinates for different patches of a surface! This should already be
familiar from using cartesian coordinates to describe conic sections: circles, hyperbolas,
ect. In these cases, you can only ever describe one ”branch” of the curve at a time with
your usual (x,y) coordinates. To describe the other branch, you need to transform your
coordinates (usually by taking new coordinates i’ = —y).1! This should be enough to begin
describing motion on curved surfaces. We know that at a point, we can use coordinates
that look like ”"flat” spacetime, Z* (from here on, I'll try to use bars to indicate local/flat
coordinates), but we can transform these coordinates into more general, curved ones, z*.
Recall the condition that spacetime coordinates were "flat” was simply that their second
derivative with respect to 7 vanished:

>+
dr
Well if we transform velocities in this "flat” frame @ = %% into curved coordinates
as above: ut = % = df: ggﬁ = Y fjl‘;ff and take derivatives carefully, we can see what

M An important addition is that the transformation must match at any points of overlap (ikey =y =
0 above) as must their derivatives at overlapping points.
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the "acceleration” of these straight trajectories will look like in these more general coordi-
nates'?:

d2zt . dz” dz?
— =-T¥ —, or
dr? P dr dr
(2.4.2) o
dut oxH 0°x°

e =T u’dru?,  (where I'j, = ——

There are a few important things to point out about this funny term called a Christof-
fel symbol: TI',. The first, is that it is explicitly coordinate dependent. This means
that, much like the matrix representation of a metric, if you change coordinates, then the
Christoffel symbol will be different.'®> The second thing to notice is that all Christoffel
symbols should vanish at the origin for "good” coordinate systems (ones that explicitly
satisfy the equivalence principle such that spacetime looks flat at the origin). But for a
general curved background, you can only get the symbols to vanish at one point, and no
matter how you transform your coordinates, they won’t be zero over any finite region of
spacetime. Finally, these Christoffel symbols seems to act like a potential for gravity. On
the left side of the equation above, we have an acceleration while on the right, we have
these funny symbols telling us about how curved spacetime is. This should remind you of
the equation for the non-relativistic equation for force:

- dp di
(243) Fgr(w = dilt) = m% = _mvcbgrav

Where @44, is the gravitational potential energy for a distribution of matter ( —GWM for
a point mass M at the origin). Looking at Eq. (2.4.2), we see this is the first instance where
we can start saying that the ”force” of gravity is nothing but the effects of spacetime being
curved.'* Well now we know how initially ”striaght” trajectories look on a curved surface.
Now let’s look at initially straight velocities or tangent vectors. If we have a 4-vector that
is straight or constant in flat spacetime (special relativistic coordinates z*), then we know
that it shouldn’t change orientation or length regardless of where we move it (I can take
the unit vector pointing up at the origin of the plane R? given by 7, and move it around
to any point in the plane, but it will still point up with the same magnitude):

ovH
2.4.4 =
( ) aju O

12Showing this is a good exercise, but can be a bit frustrating if you’re not comfortable with moving
indicies.
L3 There is a bit more subtlety here. The Christoffel symbols actually don’t transform like a tensor,

which means you can’t just hit them with chain rule factors of BZ}: to change coordinates from x to y.

Mpore precisely, at this point, we only know that this effect comes from spacetime not being flat, but
we will make the definition of curvature more concrete in future.
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Now, it should come as little surprise that this will not be true in more general coordi-
nates z”. In this case:

(2.4.5) 0" _ _pw @
Ioknd P dr
All this is saying is that vectors that look constant in one frame may get twisted in the
direction of u” if you move them along the path given by z¥. This is exactly the reason
our orthogonal coordinate system on the north pole of a sphere could be reduced to one
direction on the equator. The vectors & and ¢ got twisted as they moved down to the
equator then over to meet each other until they were parallel vectors! We’ll go through
this exact example in a little while, but before we do, we need to develop a little more
machinery. The first is a new linear operator that defines when an object is moving in a
”constant” direction along a curved surface. This is exactly the situation described above,
so if we just move the terms on the right hand side over, we can define something called
the covariant derivative: V,,.

— _TWH P
= Fupu

ovk
oxY

Here, the covariant derivative is zero because we acted on the appropriate ”constant”
velocity vector. Just like a regular derivative, it’s usually not zero for an arbitrary function,
but when V,v* = 0, we call the velocity, v#, ”covariantly constant.” Notice, however, that
this derivative is much more like a gradient: V, is actually a collection of four derivatives
(one for each index). Now we can take this one step further by focussing on the derivative
in a definite direction (focussing on a component of the gradient). If we pick a direction
given by a 4-vector u*, then we can define something called the absolute derivative:

(2.4.6) Vool = S 4 Thuf =0

Do+ dz¥ ovt dot
(2.4.7) — =u'V,ot = I Dav Iy ufu” = e + I ufu”

The absolute derivative tells us about how a single vector will look as we follow the
path given by u”. And in the spirit of what we did above, if the covariant derivative is
zero, the absolute derivative must be zero as well. So now we have a condition to move
around a single ”locally constant” 4-vector along a curved surface. This proceedure is
called Parallel transport, and quantitatively, it is given by:

Dv*  do*
2.4.8 = —+T¢ uPu” =0
( ) dr dr v
If we specialize even further, and instead of choosing just any ”locally constant” 4-vector,
we choose the one corresponding to the tangent of a path followed in spacetime (u*), then
what we get is the equation of ”straight” (meaning unaffected by no outside forces) motion
through spacetime:
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Dut  dut y
Equivalently, we can express this in terms of the worldline of a particle z#(7), feeling no

forces:

(2.4.10)

dr2 YPdr dr

D (d:z:“) _ d%zH u dxV dx”
dr \ dr

Which just reproduces Eq. (2.4.2), describing the motion of a particle in curved coordi-
nates. We call such a ”straight” path that has no external forces pushing it off its natural
trajectory a geodesic. Framed in this way, gravity is just an extension of Newton’s 1st(?)
law: in the absence of external forces, objects travel along ”straight” lines (geodesics) at
"locally constant” velocities (u? = —1). Hopefully this is starting to make some sense, but
to really get a feel for these concepts, you need to calculate something. So lets get down
to explicitly calculating Christoffel coefficients (symbols).

2.5. Calculating Christoffel coefficients. It turns out that the equivalence principle
is enough to allow us to write Christoffel coefficients in terms of our spacetime metric,
guv- Proving this isn’t too difficult, but it is a long calculation moving a lot of indicies.
Essentially, all you need is to say that the dot product of two locally constant vectors
should be constant along a geodesic if the equivalence principle holds, so'®

D D agh”
= Do w) = Z(wung) = v, <uff< i
Working through some annoying algebra, one can use this to show that the Christoffel

coeflicients can be written in terms of metric coefficients as:

0

+ 15,97 +T Zpg"“)>

T
(2.5.1) = ig”(ngkl + Orgji — O19jk)

Now let’s figure out what these coefficients look like for motion on the surface of a sphere.

We’ll do this in two coordinate systems to show how different the christoffel symbols can

be. We'll try the coordinates (6, ¢) and polar coordinates (r,#) The metric is!6:

r

1 0 3 0
(2.5.2) hij(0,0) = (o gpzg): hea(n8) = 0 .2/
15hig employs the covariant (technically absolute) derivative of a rank-2 tensor, which is just like the
one we did with vectors, but there is another Christoffel symbol to cancel out the extra index. Can you see

how to generalize this for the covariant derivative of a rank-n tensor?
16Can you see how to get these?
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So the Christoffel coeeficients should be easy enough to calculate!”. First, in the (6, ¢)
coordinates, the only non-zero entries are

(2.5.3) Fie = er = cot 0, FZ¢ = —sinf cos b,

Next, in the (r,0), coordinates the only non-zero entries are:

1 T

(254) Fgr = Fgé = ;a F;r == 1— 2’

With these in hand, one can actually calculate how the coordinate vectors in Fig. 2.1
shift to be parallel. This is a bit of a lengthy calculation, so we’ll skip it here, and move
back to GR-related material. Let’s look to see how Christoffel coefficients can give us
gravitational forces in the no-relativistic limit. To see this, we’ll want to carefully choose
the conditions that give us a non-relativistic limit. We’ll state the conditions with brief
explanations, but it’s very worthwhile to think about why these make sense:

(1) Small velocities: (v << ¢ =1). This should be familiar from SR. In this limit, we
can start treating proper time like regular time since v ~ 1

(2) Small corrections to the metric: g, = 1u + hpuw, with |hy,| << 1. This means that
spacetime looks almost like it does in SR, so all gravitational influences, coming
from the non-trivial h,, term look like weak forces on a flat background spacetime.

(3) Slow changes: Joguw = Oohyu ~ 0. This just means that the gravitational influences
aren’t changing in time too fast relative to the speed of light.

(4) Moderate gradients: 0;g,, = 0;h,, = "small”(¢e). This just means that the gravi-
tational influences aren’t fluctuating too much over space (like near a black hole)

59:7“3—7“

With these assumptions, we should be able to figure out a non-relativistic ”force” of
gravity. To do so, let’s recall our geodesic equation:

d? o XV dz’

dr2 VP dr dr
This looks a great deal like acceleration, so if we want to look at a non-relativistic force,
we’ll want to look at something like F? = m%. Luckily, in our since v << ¢, 7 &~ t. And

we can also use this to say that % ~ (1, g) = (1,€), where € is just a tiny vector. Using

all of this, and focusing on the spacial components of the left hand side, we have:

) d2 :L‘i d2 {L‘i )
(255) FgZT'(L’U = mﬁ ~ mﬁ = _mFIijuyup
So all we need to do to figure out the gravitational force is calculate these Christoffel
symbols and substitute in the values of the 4-velocities, u*. But this is still the sum of a

lot of components, so let’s see if any of the terms is small enough to ignore. At this point,

17T remember that h' is the inverse of the metric hij, so that for the plane, R?, 69 (r,0) = (0 (1) >
=
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one might be tempted to use the fact that spacial components of the 4-velocies, € is so
small to start ignoring those components compared to the time-like components that are
just 1. But to be careful, we need to check that the corresponding Christoffel symbols are
small too:

(2.5.6)
Ty = 567 Outir + Bptr — Do) = 5 (077 + W) Dby + By — D)
~ %nw(ath + Ophuo — Ophup) = %(ayh,ﬂ + Ophyi — Oihyp)
= %(280h0i — Oihoo + Oohy; + Oxhoi — Oihor + O5hoi + Oohji — Oihjo 4 Ojhy; + Orkhji — Oihji)
1

~ 5(—3z‘h00 + Oihoi — Oihok + 9jho;i — Oihjo + Ojhk; + Okhji — Oihjk)

In the first step, we used the definition of g = n*" + h*” and the fact that |h,,| <<1
and n* is constant to get to the second line. From there, we know that the spacial
components of the Minkowski metric are diagonal and equal to n*/ = 1. After that, we
simply expand out all of the terms in the sum and drop all of the ones we said were zero in
the Non-relativistic limit. At this point, since all of the terms are of the form 9;h,,, all we
know is that all of these terms are similarly small. At this point, we can now say that only
the (vp) = (0,0) terms survive because their 4-velocity components 71”7, are much bigger
than the other components €. Thus:

. . 1
(257) F = —mI%O =~ i(azhoo) = —m@iq)gmv

grav

Where we used the definition Newtonian gravitational potential energy on the right.
From this, we learn two things. First, the gravitational force comes primarily from the
gradient of the (0,0) component of the metric, go . Second, since we know what the force
is for Newtonian gravitation, we can figure out what this component looks like for a point
mass, M:

2GM>

(2.5.8) goo = 100 + hoo = —(1 4+ 2®yr4y) = — (1 -~

This component is actually the exact right answer for the time-like (0,0) component of
the spacetime metric with a mass, M, in empty space. This metric, which also describes a
stationary black hole (more on that later) is given by a spacetime interval

Ly 2GM dr? .
(2.5.9)  ds* = gy datda” = — (1 — R) dt* + -z + R%d6? + R?sin® fdp?
R

Notice that when M = 0, this just gives us the regular minkowski metric 1, = diag(—1,1,1,1).
This is also the case infinitely far away from the mass (R — oo0). When either is finite,
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this is not the case. This allows for a really interesting phenomenon: gravitational time-
dilation. If we look at the proper time for a fixed point infinitely far away (dr = dt), and
compare it to the proper time from the reference frame of a fixed point at radius R away
from the mass (d7'2 = (1 — QGTM) (dt’ )2), we find something eerily similar to time-dilation
in special relativity:

dt

2GM
1 =%

(2.5.10) dt' =

This means that the closer one is to the mass, M, the more intense the gravity, the more
time slows down. So now we see that both intense gravity and high relative velocities cause
time dilation! This purely general relativistic effect is actually significant enough that it
has to be taken into effect when GPS satelites triangulate positions using light signals.

3. CURVATURE, MATTER, AND EINSTEIN’S FIELD EQUATIONS

Now that we know a bit about differential geometry, we can start doing a bit more
physics. From what we did above, it should be clear that the ”gravitational forces” are
just the result of following geodesics, or ”straight” trajectories, in a curved spacetime. But
if we want to quantify this ”force,” we should do so in a relativistic manner: the measure
of how ”curved” a spacetime is shouldn’t depend on the coordinate system we use. For
this reason, we’ll start moving away from the coordinate-dependent Christoffel symbols
and instead describe something called the curvature tensor, R5,,, which describes how
much a vector changes direction after going around a small area dz#dx” (or alternatively,
the difference in the vector after moving along a path dx* then path dz” vs dz” first, then
dzt). See figure 3.1 for intuition.

Mathematically, this means that parallel transport is non-commutative (order matters).
And can be represented by using our covariant derivatives along the paths described:

(3.0.1) V0, Vo J0P = RE,0°

This can be expressed in terms of Christoffel symbols as follows (remember though, the
curvature is actually coordinate independent):

(3.0.2) RS, = 0.l — 0,10, + T0 T, —T0.I5,

The important thing is that, like Newton’s equation’s these are second-order derivatives
going into the final law. Thus, the information needed to solve the differential equation we
will soon write down will need analogues of both initial ”position” and ”velocity”.'® To
make this point more clear, let’s re-write the curvature tensor with all lower indicies."”

18Can you guess what these should be in the case of worldlines in GR?
1t is a good exercise to see if you can reproduce this result. It isn’t hard, but you need to be careful
to keep track of indicies
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constant (u.)

constant (u )

Fig 1.2

F1GURE 3.1. Curvature visualized as a difference in the direction of a vector
being parallel transported along two paths (direction 7 in the a-B direction
and direction f in the D-A direction) in different orders. (A — B — C vs
A—D—C)

1
(3.0.3) Rpgwj = gpng,W = —5 (3p3ugou - apauga,u + acraugpp - adaugpl/)

This is the most detailed account of curvature, but if we contract with the metric, we
can get a coarser description of the curvature called the Ricci curvature (tensor), R,

(304) R,uu = gpaRp,um/ = R,ﬁpu

And an even more coarse description can come in the form of a scalar curvature, R

(3.0.5) R=g"R,,

This just gives a general idea about whether the curvature is positive or negative. To get
an idea for this curvature, let’s try calculating these quantities for a sphere, whose metric
1 0
0 sin?6

Before diving into calculation, let’s think about which components ought to be zero.
Well, bu symmetry, we expect the all-0 and all-¢ components to vanish. Likewise, the
metric is diagonal and has no ¢-dependence, so any components with just one or three ¢
indicies will vanish. Thanks to the symmetries of the curvature tensor, this actually leaves
us in pretty good shape. Now we only need to calculate components with two 6 and two
¢ indicies. We already have the Christoffel coefficients from a calculation above:

in angular coordinates is simply g;; = R?
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¢ _md _ 9
F¢9—F9¢—C0t9, F¢¢
From this, we can easily get the only non-zero element (up to symmetry) of the curvature
tensor

0 0 0 0 0

3.0.6
( ) = — 0820 + cos® 0 = sin’ 6

This makes getting the Ricci tensor really easy:

1 1 0
(3.0.7) Ry = i = (0 5 9)
And finally, contracting with the metric makes the scalar curvature R = g% R;; = %.
And, as might be expected, this curvature is positive, uniform, and proportional to 1/r?
for a sphere. With these intuitions, let’s look at how curvature fits with mass-energy by

looking at the equation(s) that made Einstein accomplishments in GR really shine through:
Einstein’s field equations (EFE) are given by:

1 8rG
(308) RMV - iRg,uu + Aguy = CTTMV

The left-hand side has to do with curvature (second derivatives of the metric)?", while the
right-hand side has to do with the matter content of spacetime. If we recall the definition
of T,

opH
g
x

So that the 00 component is simply energy density: 700 = a0 _ %.

552 It is easy to
check that the others are momenta density, pressure densities, and stress/strain densities.
But more importantly, since the EFE relate spacetime and matter so directly, we can see
that if 05(gu,) = 0, then 0,(T") = 0 and there is a conserved quantity associated with
the direction K°.

a constant Killing vector is a vector that satisfies K?0y(gu,) = 0. This implies a
conserved quantity K, p" = g, K*p”. As an example, if there is no time-dependence in
the metric, then 90, (gur) = 0 and we would expect a conserved quantity (which we will
label with E for reasons that will become apparent):

dt

(3.0.9) E = —goot’p° = —900 7= = —MYoo

20The A term is one that essentially adds inherent curvature to spacetime. Alternatively, we could move
it to the "matter” side, where it will be negative, and act like "repulsive” mass. This is the term responsible
for the acceleration of expansion in our universe and represents the concentration of ”dark energy” in our
universe
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Where v = ﬁ is the lorentz factor from time dilation in the special relativity section.

)

The negative sign is simply a convention to make sure this ”energy” is positive. If we take
a familiar metric, the minkowski metric of flat spacetime, then gg9 = ngp = —1, and thus
E = ym, which is exactly the formula for energy in SR! So this formula simply generalizes
what energy is in curved spacetimes that admit of time-independent metrics. The same
can be done for any other coordinates that do not appear in the metric, like ¢, which will
give a conserved quantity of angular momentum (makes sense, right?).

4. BLACK HOLE METRICS

Now as you may have guessed from the frustrating number of indicies and differential
objects above, Einstein’s equations are really hard to solve. So much so that there are only
a handful of analytic solution. Luckily, black holes have enough symmetries to produce
such "nice” solutions. Black holes are very special objects. They warp spacetime so much
that they pull all matter that crosses their event-horizon into a singularity. Near this
point, the gravity is actually so strong in such small regions of spacetime that quantum
effects become important and GR breaks down. But outside the singularity (where we
actually understand what’s going on), the only affects on spacetime come from long-range
properties of the matter in the singularity.?’ Imagine a point particle. If all you care
about are gravity and electromagnetism, you can specify pretty much everything about
this particle’s dynamics once you know its mass, m, a charge, q, and an intrinsic spin, s (or
angular momentum). So let’s see what we can understand about black holes by considering
the effects of these properties.

4.1. Schwarzchild Black Hole. First, let’s look at the metric for a stationary black hole
of mass, M. This is called the Schwarzchild metric??:

2GM dr?
2 2 2 2
(4.1.1) dr’ = — (1 - > dt* + 7(1 — %;M) + 74dQ)

Where dQ? = df? +sin? d¢? is the differential of a solid angle (region on a sphere). This
has a few point of interest. First, if we go off infinitely far from the black hole (r — o0), then
the metric becomes minkowskian dr? = —dt? + dr? + r2dQ?, as we should hope it would.
Next, there seem to be two problematic radii: » = 0 and r¢ = 2GM. These both produce
singularities in the metric in these coordinates. It turns out that only the former singularity
is fundamental. One can calculate the intrinsic, coordinate independent curvature at r = 0,
and see that it blows up so we know GR has failed us. But when » = 2G M, we can actually
get rid of the singularity by picking better coordinates.?> But something interesting does
happen past the event horizon (r < ry = 2GM). Here, we see that the time coordinate

2lwenl go into more detail in the next section when discussing the 0th law of Black Hole
Thermodynamics.

22you may have noticed this is actually an equation for the proper time, but you should be able to
extract the metric from this pretty easily by now

2359ee Kruskal ? Szekeres coordinates for such an example.
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and radial coordinate flip sign, so that it seems they have interchanged roles. And in some
sense, they have. But this there is no mystical interchange of time and space and some may
wish to claim. Rather there is a subtle shift in cause and effect. In normal experience, we
cannot help but move forward in time, regardless of how we move through space. However,
as soon as one passes the event horizon, there is an extreme shift in one’s light cone (which
shows what can be causally connected to a point), such that moving towards the singularity
is inevitable no matter how one "moves through time.” Further, since the metric doesn’t
depend on the time coordinate or the azimuthal coordinate (0¢(gu,) = 04(g9u) = 0), we
expect two conserved quantities corresponding to energy and angular momentum:

2G M\ dt
dr

E = gut'p’ = —gup” =m <1 -

(4.1.2) r

L= guuﬁgupy = gd)upy =0

Where we have to be careful to note that p* is a linear 4-momentum, and thus, has no
angular component. As expected, no angular momentum and an energy that depends on
the proximity to the black hole with some weird stuff happening near the event horizon. It
seems like energy is negative when r < 2GM, but this is kind of ok, since we can’t really
interact with anything past the event horizon, so it’s not as though we could use ”negative
energies” to fuel infinite energy outside the event horizon. You can kind of think of this as
simply redefining the sign associated with the ”time” coordinate, just like in the metric.
There’s still a conserved energy, but it has to be a different sign from whatever convention
we choose outside the event horizon as a consequence of the weird causal disconnect past
the horizon.

Let’s discuss another important quantity: surface gravity is akin to the acceleration felt
at an object’s surface. On the earth’s surface, the surface gravity is g = %\f ~ 9.81m/s>.
Unsurprisingly, defining accelerations in GR is a bit more complicated, but the intuition
holds surprisingly well. In GR, it is defined as the acceleration, seen from an observer
infinitely far away, needed to keep an object on the designated surface. If K* is a killing
vector (generates a conserved quantity), then the surface gravity, x mathematically is
defined by

(4.1.3) K"V ,K” = kK"

There are various tricks to calculating these, but for now, I will simply quote the result
for a Schwarzchild black hole: xk = ﬁ. This kind of makes sense since the event horizon

: _ ; _ GM _ 1
lsatRS—2GM,SOthatg—R7§—m.

4.2. Kerr Metric. Now let’s look at a metric for a rotating black hole with mass M and
angular momentum J:
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(4.2.1)

dr? = (1 - RST) di® — (E> dr? — xdo* + <r2 ta?+ RS”‘QM)) sin? fd¢? + Mdtdqﬁ
by A by by
Where we have made the following substitutions for convenience: Rg = 2GM, a = ﬁ,
Y =124+ a’cos?f, and A = r2 — 2GMr + a®. This metric imposes a few limits on these
quantities?: la] <1, ¥ > r2. If we look very closely at this metric, we see that problems
start to appear if either A = 0 or ¥ = 0. For the former case, we find two different radii:

(4.2.2) ry =GM £/ G?*M? — a?

A little algebra shows that at the outer radius, r, the purely time component becomes:

1

b

Thus, the time coordinate has already flipped to be positive, and we expect that the

same will be true of energy. In this case, however, flipping of the time component does

not mean that nothing can escape this region. Instead, the causal flip is that nothing can

rotate in the opposite direction of the black hole in this region. It is actually the region

within the second radius, r_, where nothing can escape out to infinity. But let’s look

back at this odd negative energy region within the outer radius. Again, since the metric

doesn’t depend on the time coordinate or the azimuthal coordinate, we get our conserved
quantities by looking at vectors in their directions:

a?sin? 6

1
(X — Rgr)dt* = 5 (A- a®sin® 0) dt* = dt* > 0

E——gup’ =m(1- 2GMr\ dt n 2G Mmar sinzﬁ@

(4.2.3) by dr by dr
o I v 2GMmar 20ﬁ+m(r2+a2)27mAaQSin20 ) 29@
= 9gevP = 72 S111 ar S Sin Ir

These seem fairly complicated, but we can focus on some of the broader qualities. The
first thing to note is that the first term is the same as ggg, and thus is negative within
r4. So it does not take much imagination (or too much algebra) to show that there are
configurations where the energy is negative without crossing into the final event horizon
r < r_. Because of this, it is actually possible to extract energy from a spinning black
hole by throwing things in! The fix to this is that as you extract energy, you actually slow
down the black hole’s rotation. Take a look at L and you’ll see that adding negative energy
to the black hole requires adding angular momentum against its rotation, and so you can
only continue to extract energy until it stops rotating. No infinite free energy for us :(

Now we turn to the surface gravity. As before, I will simply quote the result for the
surface gravity for a Kerr black hole: k = - — M 02, where Q. is the angular velocity

iGM
at the event horizon. The important thing to note here is that x — 0 when Q4 and

24Can you see why these should hold? It’s actually a bit subtle
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consequently J gets large enough. This will be significant for the 3rd law of Black Hole
Thermodynamics. Now let’s add some charge in.

4.3. Reissner Nordstrom metric. Charge is a tough thing to describe in GR. Techni-
cally, to do it correctly, you don’t salve Einstein’s field equations. You have to solve a
more general set of equations that turns classical electromagnetism into geometry as well.
The cost of doing this is introducing a ”wrapped up” 5th dimension which accounts for the
gauge symmetry in E&M. Roughly speaking, positive charges correspond to mass spinning
around this extra dimension in one polarity, while negative charges spin in the other po-
larity. But when you reduce down to 4 dimensions, you can still describe the same kind of
dynamics, but now, the charges just become scalar quantities. And luckily, for black holes,
the charge is conserved! We’ll skip over any further detail for now, and just push on to the
metric

R? r2\ !
(4.3.1) dr? = (1 - % - Tf) dt? — (1 = % + Tf) dr® — r2d0?

Where dQ? = df? + sin? 0d¢?, Rg = 2GM, and Ré — @G Aq with the Kerr-solution,

4meq

R2
there are actually two horizons, given by the solutions to 1 — % + r—? = 0. This gives
solutions:

(43.2) re =5 (Rs+ /R~ 4R)

r4 indicates the event horizon, while r_ is the Cauchy horizon. A little algebra shows
that the time component changes sign at r (try plugging in r = %) but unlike the case of
the Kerr-solution, once you enter the outer horizon (the event horizon), you already can’t
escape The inner horizon has very technical significance that basically amounts to the fact
that inside this horizon, it looks like there exist closed time-like curves (time loops). But
what this means physically is far from clear, so we’ll just move on. Now what goes on Let’s
look at the conserved quantities. As we said before, the charge is conserved, but deriving
this conservation takes us too far into Einstein-Maxwell theory for these notes, so we’ll
just cite the conserved charge coming from the electromagnetic potential of the black hole

A, =(Q/r,0,0,0), and move onto the energy and angular momentum:

; R R2\ 4t
Ezguut“l?”z—gwp”:m<1—S+Q) at

r r2 | dr

(4.3.3)
L= g;u/d;'upy = g(j)l/py =0

From the discussion above, we see that energy can be negative inside the event horizon.
But like the negative energy for the Schwarzchild black hole, this shouldn’t concern us, as
it is disconnected from any measures of energy outside the event horizon.
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Finally, let’s look at the surface gravity. As before, I will simply quote the result for

\/R%/4—R2
the surface gravity for a charged black hole: x = & < , where Rg and
R%/2-R+Rs\/R%/4-R}

Rg are, as defined above, quantities proportional to the mass and charge respectively. The
important thing to note here is that  — 0 when Rp — 2Rg and consequently () gets large
enough. This will also be significant for the 3rd law of Black Hole Thermodynamics. Now
that we’ve discussed angular momentum and charge independently, we’ll just write down
what the metric looks like when everything is put together:

4.4. Kerr-Newman metric. Because of how complicated this metric is, we’ll be express-
ing it in a condensed, slightly unfamiliar form. If you want, you can just expand out the
compressed quantities to recover a more familiar expression:

dr? A . sinZ 6
(4.4.1)  dr?* = p? (A - 502) + 2 (dt — asin® 0dg) dr* + 7(&2 + a?)d¢ — adt)?
Where a = %, p? =712 +a’cos?0, A =r?> — Rgr + a® +R2Q, Rs=2GM, R2Q = fjg.

These actually give us 4 horizons by setting the spatial and temporal elements to 0.
These give inner and outer event horizons and inner and outer ergospheres.

The surface gravity of this solution can be calculated as Kk = %
+

_ Rs
, where ry = =% +

2
\/ (%) - RQQ — J2. The important takeaway is that there is a delicate balance between

the mass, charge, and angular momentum, so that in the appropriate units, M? > Q%+ J2,
with equality when the black hole becomes extremal.

5. BLACK HOLE THERMODYNAMICS PRIMER

Here, I will state the laws of classical thermodynamics in a particularly suggestive way,
then quote some results from GR (and some later supplements from QFT in curved back-
grounds) as motivation for the laws of Black Hole Thermodynamics (BHT). Now, this field
is vast, subtle, and requires a lot of work to show simple things, so as before, this will
consist of mostly of undefended claims. A final note, please forgive the numbering system
for the laws; it is a historical accident since the Oth law seemed so obvious no one named
it till the other three existed and people wanted to systemize thermodynamics.

(1) Oth law: All systems come to a unique equilibrium, and the macroscopic variables
describing the system are homogeneous (Temperature, Pressure, Density, etc are
constant through a closed system). This can also be stated as equilibrium being a
transitive property (If system A is in equilibrium with system B, and system B is
in equilibrium with system C, then system A is in equilibrium with system C)

(2) 1st law: Energy conservation, dE = dQ — dW = TdS — PdV —ndu — . ..

(3) 2nd law: Entropy increase: ASgyseq > 0 (the entropy of a closed system increases
over finite time scales, meaning there is a tiny chance for fluctuation, but the
infrequency of these fluctuations diverges with the system size)
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(4) 3rd Law: Freezing out: As T' — 0, dS — 0. (As one approaches absolute zero,
there are fewer means to rearrange microstates, and the changes in entropy available
tend to zero)

For black holes, there are similar theorems. These require the assumption of Einstein’s
field equations, some energy conditions amounting to mass being defined as positive in the
appropriate manner, and a condition eliminating considerations of "naked singularities”
(points of infinite curvature not hidden by an event horizon):

(1) Oth law: All stationary spacetime solutions are black hole solutions, or more
specifically, Kerr-Neuman metrics with the only freedom being in the choice of M,
Q, and J. On the event horizon, the surface gravity, k, is constant

(2) 1st law: Mass/Energy conservation, dM = g-dA — Qd.J — ®dQ

(3) 2nd law: Entropy increase: ASy ~ AA, > 0 (the area of a classical black hole
is non-decreasing). Hawking later discovered black holes radiate at temperature
T = 5-, and thus the entropy of a black hole is § = % Thus the generalized
entropy law is ASye, = ASH + ASnmatter > 0

(4) 3rd Law: Freezing out: As x — 0, the black hole becomes extremal. At these
points dA — 0.

A final note on why these laws are interesting. In classical thermodynamics, we always
have available to us the perspective of statistical mechanics. In this perspective, all of the
macroscopic variables we care about in thermo are actually just averages or distributional
properties ofstatistical ensembles of microscopic variables. Most pointedly, in statistical
mechanics, entropy is defined as S = kplog(), where kp is the boltzman constant, and
Q is something called the multiplicity. The multiplicity counts the number of different
configurations of microstates that give rise to the same macroscopic state or description.
Quite literally, it is a measure of how little one knows of the microscopic state from the
knowledge of the macroscopic. Or, in less information-theoretic words, how chaotic the
microscopic state can be without you knowing. Thus, to tie entropy to its familiar ” chaotic”
or information-theoretic interpretations, we require microstates. Well, the problem with
black holes, is that we don’t know of any good microstates to describe the matter within
them. But with all the matter seemingly at the singularity, we either need to find a way to
quantize matter at a singular point or quantize the spacetime around it in such a way that
it ”leaks out.” Well the former is essentially a lost cause: quantum mechanically, they’re
all too confined to give any meaningful description via our typical quantization techniques
(singularities are just bad). And general relativity doesn’t speak about microscopic states
at all, but if there is a way to quantize spacetime, we might be able to speak about the
quantum spectra inside a black hole in a meaningful way. This is a, if not the, major
theoretical push in high-energy physics today: finding a quantization of spacetime that
produces the right entropy for black holes from its microscopic description and reduces to
General Relativity in its classical limit.



